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Abstract. The percolation problem for the complement of the union of randomly located, 
overlapping spheres i s  shown to be equivalent to a bond percolation problem on the edges 
of the Voronoi tesselation of the sphere centres. This result provides a convenient 
definition of cluster size, and therefore of the critical exponents, for this problem. It also 
provides an efficient algorithm for Monte Carlo computation of the percolation threshold 
and the critical exponents. 

1. Introduction 

Most percolation problems studied to date involve a regular lattice from which sites 
or bonds are removed according to some random process. A noteworthy exception 
is the percolation problem for overlapping circles or spheres with randomly located 
centres, an intensively studied problem which is equivalent to a percolation problem 
on an irregular lattice, or network, whose sites are the circle or sphere centres. A 
variety of methods have been employed to compute the percolation thresholds and 
the critical exponents for the two-dimensional and three-dimensional versions of this 
problem (Pike and Seager 1974, Haan and Zwanzig 1977, Gawlinski and Stanley 
1981, Vicsek and Kertksz 1981, Kertesz and Vicsek 1982). 

Here we analyse a percolation problem for which no underlying network, regular 
or irregular, is defined a priori, namely the percolation problem for the region of space 
which is the complement of the union of randomly located spheres. The region of 
space thus defined is the ‘allowed region’ in the hard-sphere Lorentz model used to 
study diffusive transport (Gotze eta1 1981, Masters and Keyes 1982), so its connected- 
ness properties are of particular interest. A Monte Carlo calculation of the percolation 
threshold for this problem has provided an estimate of 0.966 for the critical volume 
fraction (Kerttsz 1981). The critical exponents for this problem were not considered. 

It is shown here that the percolation problem for the hard-sphere Lorentz model 
is equivalent to the percolation problem for a certain subset of the edges of the 
Voronoi tesselation (Santalo 1976) of the sphere centres. Since the latter problem is 
a network percolation problem, cluster size, and therefore the critical exponents, are 
defined in the usual manner. Furthermore, the usual Monte Carlo methods for 
computing the percolation threshold and the critical exponents for networks are 
applicable. This approach is preferable to direct analysis of the hard-sphere Lorentz 
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model using a continuum definition of cluster size, such as cluster volume. In particular, 
computational methods for networks are more efficient than the algorithm employed 
previously (KertCsz 1981) which uses a sequence of auxiliary lattices to obtain success- 
ive approximations to the continuum percolation problem. 

2. Equivalence to a network problem 

The phenomenon of percolation is characterised by the divergence of some function 
of the cluster size distribution, such as the mean cluster size or the size of the largest 
cluster in the system, In network problems, a cluster is a mutually interconnected set 
of bonds or sites of the network, and its size is defined as the number of bonds or 
the number of sites. (If the number of bonds per site is finite and bounded, then these 
two definitions of cluster size are equivalent with respect to percolation.) 

In the present problem, we define the medium to be the union of sphere interiors 
and the void to be the complement of the medium. For the void percolation problem, 
no underlying network is defined a priori. In the absence of an underlying network, 
cluster size can be defined only in terms of a continuum quantity such as cluster 
volume, which is relatively inconvenient for analysis and computations. Here, we 
show that this difficulty can be overcome using a geometrical construction called the 
Voronoi tesselation, which provides a suitable network. 

A tesselation is a partition of space. The Voronoi tesselation is defined with respect 
to a given set of points in space. The Voronoi tesselation is the partition of space 
into regions such that each region is closest to one of the given set of points. In three 
dimensions, the boundaries of these regions are polyhedra, called the Voronoi poly- 
hedra, and the faces, edges and vertices of the Voronoi tesselation are defined with 
respect to the set of Voronoi polyhedra (Finney 1970). The Voronoi polyhedra are 
also known to mathematicians as Dirichlet regions and to physicists as Wigner-Seitz 
cells (Zallen 1979). Each polyhedron contains exactly one point of the given set, a 
point which we denote as the ‘centre’ of the polyhedron since the given set of points 
in the present application is the set of sphere centres. 

The key result of this paper is that vertices of the Voronoi tesselation which are 
connected by the void are connected by edges of the Voronoi tesselation contained 
within the void. If cluster size for a connected region of the void is defined as the 
number of vertices within that region, then this result establishes the equivalence of 
the void percolation problem to the bond percolation problem for those edges of the 
Voronoi tesselation which are contained within the void. 

The results derived below are valid for spheres of identical radius whose centres 
are a realisation of any homogeneous random point process in three-dimensional 
space. The random processes usually considered in the percolation problem for the 
medium are the Poisson process and its generalisation which incorporates a hard core 
(Pike and Seager 1974). 

Since the geometrical constructs developed below are based on a random distribu- 
tion of sphere centres, many of the statements below are true ‘almost surely,’ in the 
measure-theoretic sense. The statements which require this qualifier are obvious from 
the context! so it is omitted in what follows. 

To establish that vertices of the Voronoi tesselation provide a reasonable measure 
of cluster size for the void, we prove that each point in the void is connected within 
the void to some vertex. 
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Lemma 1. A given point in the interior or on the boundary of a Voronoi polyhedron 
is connected to a vertex by a path which is never closer to the polyhedron centre than 
is the given point. 

Proof. The given point is contained in some cone whose apex is the polyhedron centre 
and whose base is a polyhedron face. The point of the cone which is farthest from 
the centre is a vertex of the face, namely the vertex which is farthest from the line 
through the centre which is perpendicular to the plane containing the face. Therefore, 
this vertex is farther from the centre than is the given point. Furthermore, the straight 
line from this vertex to the given point is the required path. 

Theorem 1. Every point in the void is connected to some vertex by a path contained 
in the void. 

Proof. By definition of the Voronoi tesselation, points in the same Voronoi polyhedron 
are closer to the centre of that polyhedron than to any other centre. Therefore, if a 
given point is in the void, then all points in the Voronoi polyhedron containing it 
which are farther from the centre than the given point are also in the void. By lemma 
1, the required path exists. 

Next, we show that a set of vertices in the void' is connected only if the set is 
connected by tesselation edges contained in the void. This result establishes the 
equivalence of the percolation problem for the void to the bond percolation problem 
for edges contained in the void. 

Theorem 2. If two vertices are connected by the void, then they are connected within 
the void by edges of the Voronoi tesselation of the centres. 

Proof. Consider any path contained within the void which connects the given vertices. 
This path is modified to obtain a path consisting of tesselation edges. First, each path 
segment contained within the interior of a Voronoi polyhedron is replaced by its conic 
projection from the polyhedron centre onto the polyhedron surface. By an argument 
similar to the proofs of lemma 1 and theorem 1, the modified path segments are 
contained within the void. By construction, the modified path is contained within the 
faces of the Voronoi tesselation. Next, each path segment contained within the interior 
of a face is projected onto the perimeter of that face. The apex of the projection is 
the intersection of the plane containing the face with the line through the polyhedron 
centre which is perpendicular to that plane. By similar reasoning as before, the 
modified path segments are contained within the void. By construction, the modified 
path consists of edges of the Voronoi tesselation. Since the endpoints of each.segment 
remain fixed at each stage of the construction, each intermediate path, as well as the 
final path, connects the two given vertices. 

Finally, we establish an explicit, computationally convenient criterion to determine 
whether an edge of the tesselation is contained within the void. 

Theorem 3. An edge of the tesselation is contained within the void if and only if its 
point of closest approach to the plane of the adjacent centres (i.e. the centres of the 
three Voronoi polyhedra sharing the edge) is in the void. 
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Proof. By definition of the Voronoi tesselation, each point of an edge is closer to the 
three adjacent centres than to any others, and is equidistant from these centres. Due 
to the latter property, the edge is perpendicular to the plane containing these centres. 
The point of the edge which is closest to the centres is therefore the point of closest 
approach to the plane. (The edge may or may not intersect the plane.) If this point 
is in the void, then by the definition of the void, the entire edge is in the void. The 
proof of the converse is trivial. 

This method for establishing the equivalence of the void percolation problem for 
overlapping spheres and a network problem is strongly dependent upon the assumption 
that all sphere radii are identical. Generalisation to spheres of unequal radii is an 
open question at present. Thus, the existence of a network problem equivalent to 
the void percolation problem does not follow immediately from the fact that the 
complementary problem (percolation of the spheres) has an underlying network. 

3. Computational method 

A Monte Carlo method for estimating percolation properties of the network of edges 
identified in theorem 3 (and hence of the void, by theorem 2) is as follows. First, a 
set of sphere centres is randomly generated in the usual manner (Pike and Seager 
1974). Second, the coordinates of the vertices of the Voronoi tesselation of the centres 
are computed and each vertex is associated with its four adjacent centres (Bernal and 
Finney 1967, Finney 1970). The two vertices associated with each triple of adjacent 
centres are the endpoints of an edge. In the third step, the ‘allowed’ edges, i.e. edges 
contained within the void, are identified using the criterion of theorem 3.  This criterion 
is implemented by determining whether a given edge intersects the plane of the 
adjacent centres and if so, testing whether the distance from the intersection point to 
the adjacent centres exceeds the specified sphere radius, r. If the edge does not 
intersect the plane, then the test is performed on the vertices which are its endpoints. 

The fourth step is to group allowed edges into clusters by identifying pairs of edges 
sharing a common vertex. The percolation threshold and the critical exponents may 
then be determined by the usual methods (Pike and Seager 1974). 
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